BMP's FOR FACING DROUGHT STRESS ON OIL PALM

Marihat, September, 29th 2016

Suroso Rahutomo

Soil Science & Agronomy Research Group Indonesian Oil Palm Research Institute (IOPRI)

Outline

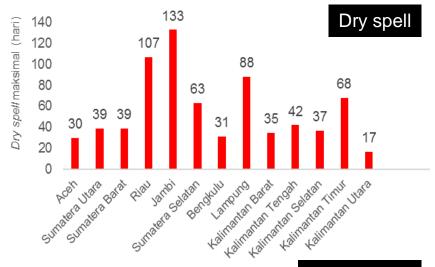
- Introduction
- El Niño 2015
- Effects of drought stress on oil palm
- BMP's: Pre, during, and post drought stress
- Conclusion

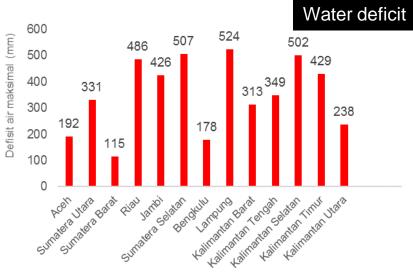
Introduction

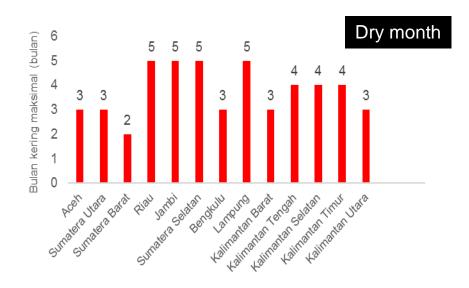
Rainfall & Oil Palm

- Annual rainfall 1750 3000 mm / year
- Monthly rainfall > 60 mm
- Minimum water deficit and dry spell incidences

Oil palm has been grown in Sumatra, West Java, Kalimantan, Sulawesi, Maluku, and Papua


Pic source: http://informasi-kelapasawit.blogspot.co.id/


Potential of high water deficit incidence in the regions with monsoonal rainfall, worse with climate anomalies (i.e., El Niño)



El Niño 2015

Sumatera & Kalimantan

- Southern part of Sumatra suffered longer dry spell, dry month, and higher water deficit than other regions in Sumatra.
- Central, East and South Kalimantan suffered longer dry spell, dry month, and higher water deficit than other regions in Kalimantan.

Triggers of drought stress on oil palm

- Annual rainfall < 1250 mm/year
- Water deficit > 200 mm/year
- Dry month (rainfall < 60 mm/month) > 3 months
- Dry spell > 20 days

Symptoms of drought stress on oil palm

Low sex ratio

Abortion

Bunch malformation

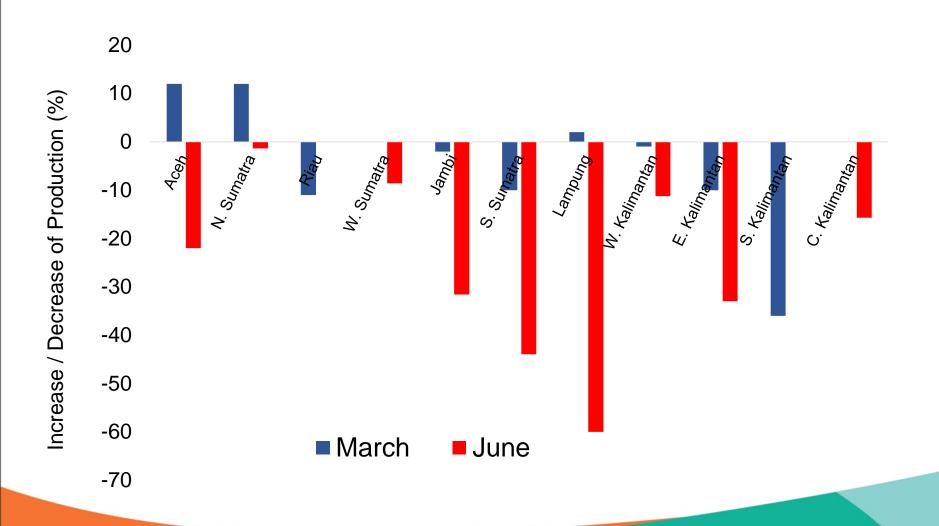
Problems on fronds: >2 spear fronds, fronds fracture, early senescence.

Water deficit & fronds during El Niño 2015

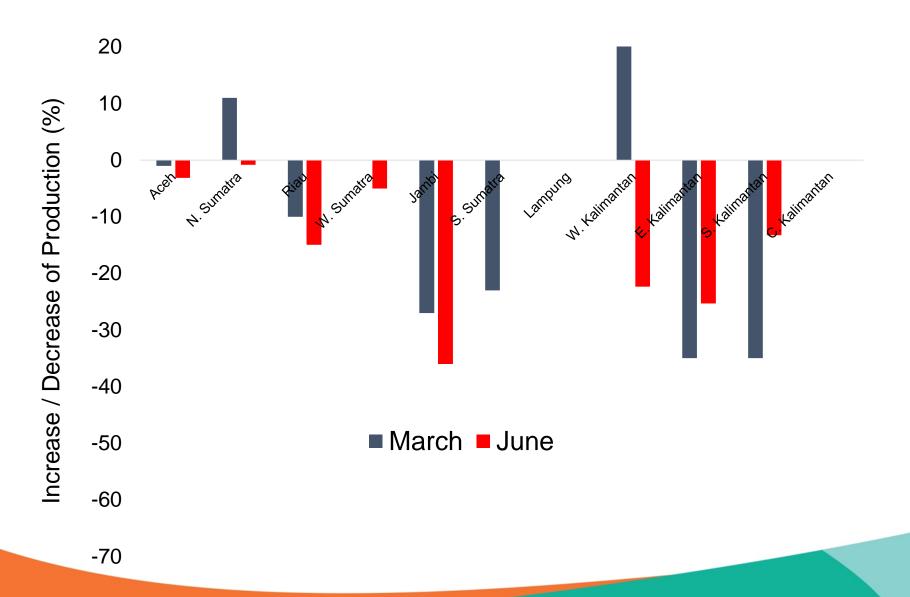
Locations & samples number	Water deficit	Spear fronds (fronds per palm)	Frond fracture incidences (frond/palm)
Aceh (7 estates)	192	0-1	0-4
North Sumatra (33 estates)	331	0-1	0-4
Riau (20 estates)	486	1-3	2-8
West Sumatra (4 estates)	115	0-1	0-2
Jambi (8 estates)	426	1-4	4-14
South Sumatra (7 estates)	507	1-4	4-14
Bengkulu (1 estate)	178	0-1	0-2
Lampung (3 estates)	524	3-6	4-24
West Kalimantan (9 estates)	313	0-1	0-4
Central Kalimantan (3estates)	349	1-2	0-4
South Kalimantan (3 estates)	502	3-6	4-24
East Kalimantan (5 estates)	429	3-5	4-16
North Kalimantan (1 estate)	238	0-1	0-2

Observation covered at least 75% area of each estate. (Source: Pradiko et al., 2016)

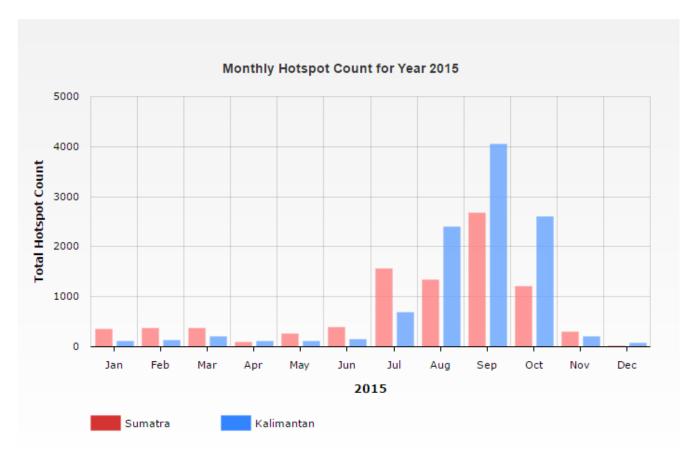
Prolonged Dry Season & Soil

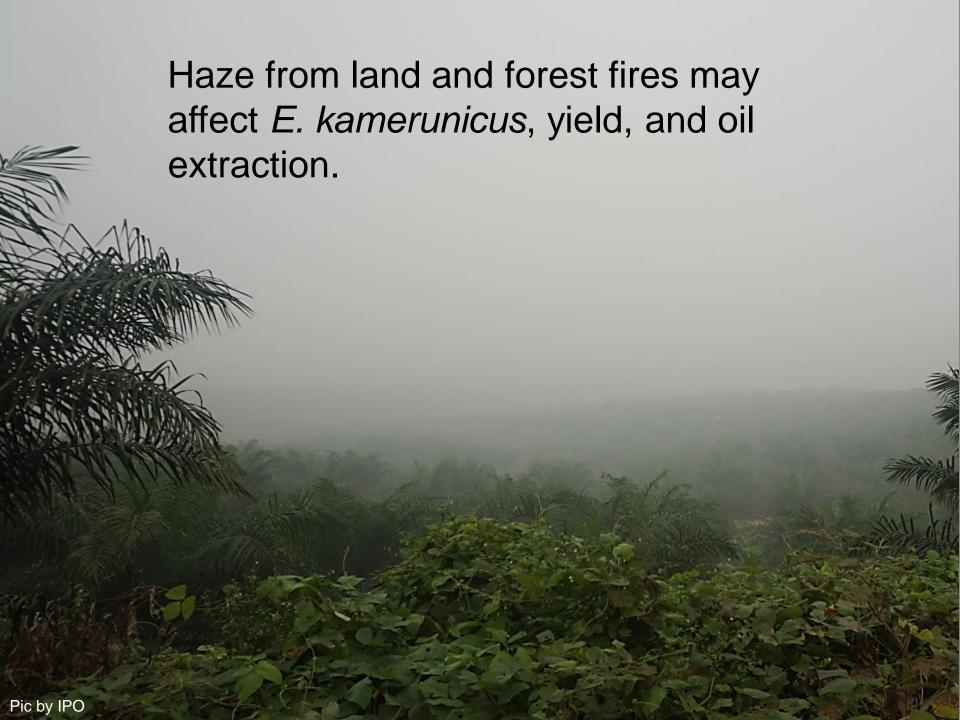

Drought may cause soil crack which can lead to damage on tertiary and quaternary palm roots.

Prolonged Dry Season & Pest Attacks



Drought could lead to increase pests, such as caterpillars and rats.


% relative yield 2016 to 2015, government owned companies


% relative yield 2016 to 2015, private companies

El Niño 2015 caused extreme drought & increased number of hotspots and haze.

Source: ASMC

Effects of haze on oil palm yield & oil extraction

Location	Haze impacts	Yield decrease (%)			
Location	(months)	Year X	Year X+1	Year X+2	
	1	1,6	1,4	0,2	
North Sumatera, Riau, and Jambi	2	3,5	3,2	0,4	
	3	5,5	5,0	0,5	

A case study in Jambi
Oil extraction (CPO only)
dropped by 0.60% following
the decrease of visibility level
due to haze in October 2015

1. Continuous monitoring and evaluation of climate conditions

 Manual or Automatic Weather Station to generate data for establishing an alert system of drought stress.

2. Agronomic practices

- Castration for immature palms.
- Proper fertilizing: type, dosage, time, and method.
- Discipline canopy management : 48-56 fronds (<8 years) and 40-48 fronds (≥ 8 years)

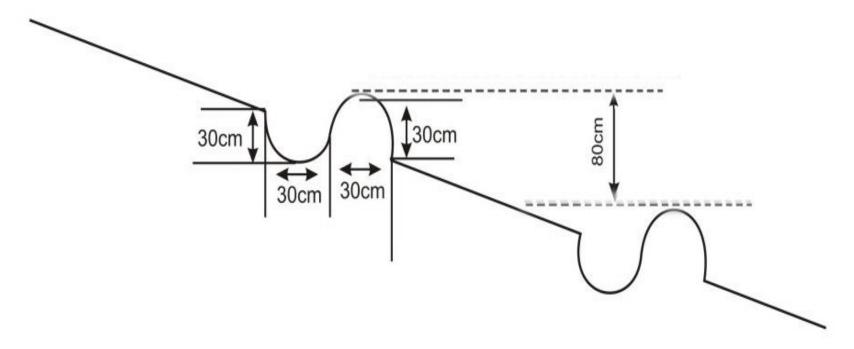
3. Application of Empty Fruit Bunch or EFB compost

Maintaining soil organic matter to increase water holding capacity of the soil.

4. Cover crop management

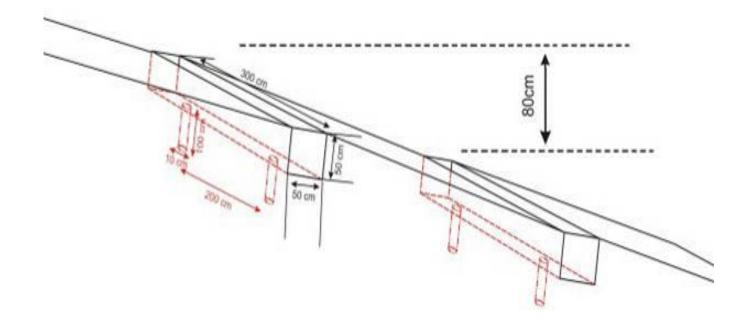
- Cover crop should be maintained.
- Blanket system to eradicate all of cover crops in the soil surface is not recommended.

5. Establishing soil and water conservation


Silt-pit Bund Terrace

Water balance under treatment of control, bond terrace, and silt pit (Dec 2007 to Dec 2008, a case study in Lampung).

No	Variable	Bund Terrace	Control	Silt pit
1	Rainfall (mm)	2200.12	2359.48	1997.44
2	Interception (mm)	398.29	472.21	229.38
3	Total runoff (mm)	253.35	472.59	152.4
4	Evapotranspiration (mm)	1099.32	1099.32	1099.32
5	Water storage (mm)	449.16	315.36	516.34


Source :Murtilaksono et al., 2011

Bund Terrace

Bund terrace is established parallelly with contours in a vertical interval of about 80 cm. The height, width, and depth of each bund terrace are about 30 cm. In the ditch path, *biopori* (50 cm depth) is built at every 2 m. Organic matter (palm leaves, cut fronds, shredded EFB) can be added into the *Biopori*.

Silt Pit

Silt pit is built parallelly with contour in a zig-zag pattern between contours. The dimensions is 300 cm lenght, 50 cm width, and 50 cm depth. Distance between a silt pit to the next silt pit is about 2 m. Two *Biopori* holes can be applied in the silt pit, the distance between two holes is 2 m. Organic matter (palm leaves, cut fronds, shredded EFB) can be added into the *Biopori*.

Effects of combination of bund terrace and cover crops management (*N. bisserata*), a case study in Lampung

		Growth variables			
Month	Treatment	Frond fracture incidences (fronds / palm)	Average leaf area (m²)	LAI	
	G_0T_0	16.3	9.90	5.80	
August	G_0T_1	15.3	9.89	5.80	
2014	G_1T_0	13.3	9.89	5.80	
	G_1T_1	7.3	9.89	5.80	
	G_0T_0	15.3	10.29	5.88	
December	G_0T_1	6.3	10.29	5.89	
2014	G_1T_0	4.5	10.02	6.02	
	G_1T_1	0.3	10.06	6.04	
April 2015	G_0T_0	5.3	10.49	6.00	
	G_0T_1	5.3	10.42	6.26	
	G_1T_0	5.3	10.48	6.29	
	G_1T_1	0.3	10.50	6.30	

Note: G_0 = without bund terrace; G_1 = using bund terrace; T_0 = without cover crops; T_1 = using cover crops (*N.biserrata*)

Effects of combination of bund terrace and cover crops management (*N. bisserata*), a case study in Lampung

		Variable of production			
Month	Treatment	Number of male inflorescence (inflorescence/palm)	Number of female inflorescence (inflorescence/palm	Number of bunches (bunches/palm)	Weight of bunches (kg/FFB)
August 2014	G_0T_0	3.0	0.0	3.0	-
	G_0T_1	0.3	0.0	5.5	-
	G_1T_0	1.3	0.0	1.0	-
	G_1T_1	0.3	3.3	5.5	-
December 2014	G_0T_0	3.3	0.0	2.8	-
	G_0T_1	0.3	1.3	5.0	-
	G_1T_0	1.3	0.0	0.5	-
	G_1T_1	0.0	3.5	5.8	-
April 2015	G_0T_0	3.0	2.8	2.3	24.1
	G_0T_1	1.0	2.3	4.5	25.3
	G_1T_0	0.8	1.5	0.0	25.3
	G_1T_1	0.3	2.0	4.5	26.0

Note: G_0 = without bund terrace; G_1 = using bund terrace; G_0 = without cover crops; G_1 = using cover crops (*N.biserrata*)

^{*)} Observation result with others researcher

Canal blocking on peat soil

Maintain soil water level at about 40-60 cm.

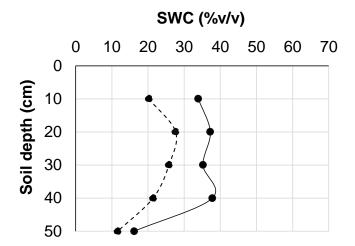
During drought stress: Minimizing Impacts

- Pruning should be delayed especially on young palms.
- Activities can be focused on road construction and maintenance, including drainage systems

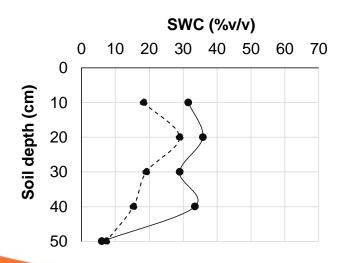
During drought stress: Minimizing Impacts

- Rescheduling application of fertilizers when rainfall is <60 mm/month.
- Simple irrigation or applications of palm oil mill effluent.

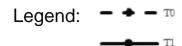
During drought stress: Minimizing Impacts



- Minimizing use of chemicals for weeding control.
- Monitoring and integrated pests control
- Hotspots monitoring to prevent land and forest fires


August 2014 (Dry season)

SWC (%v/v) 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 40 50 60 70


September 2014 (Dry season)

October 2014 (Dry season)

Profil of soil water content (SWC) in plot without (T₀) dan with (T₁) cover crops, a case study in Lampung

After drought stress: Recovery

Continuing fertilizer application when rainfall is >150 mm/month or 50 mm/10 day

After drought stress: Recovery

Monitoring on fungal and bacterial infections, especially on palms with high incidences of frond fracture and bunch malformation by applying proper canopy management.

Conclusion

- Oil palms in southern part of major islands in Indonesia are potentially vulnerable to drought stress due to monsoonal rainfall, worse with El Nino.
- Drought stress may decrease yield
- BMP's are required to face the drought stress, including preemptive actions, minimizing impacts, and recovery.

Thank you

